What's new in EhLib 9.2
(New features of your applications)
Brief description of new features in this version:
· Support for ARC (Automatic Reference Counting) compilers
· EhLib library compatibility with CrossVCL library

· Features and limitations of the library component for the platforms Lazarus, MacOS, Linux

· Features of work and animation when moving columns in DBGridEh

· The technology for storing settings - SettingsKeeper

· Other changes and new features
Support for ARC (Automatic Reference Counting) compilers
The library adds support of ARC (Automatic Reference Counting) Delphi compilers.

To date, Delphi 10.2 has several compilers that, in addition to the Win32 / 64 platform, allow you to compile and create applications for platforms such as Linux 64-bit, MacOS, iOS 32-bit, iOS 62-bit, Android.

In addition to the fact that compilers compile an application for a specific platform, they also differ from each other by garbage collection model in the application.

In applications under Linux 64-bit, iOS 32-bit and iOS 62-bit, the ARC garbage collection method is used. In this model, whenever you create an object reference, the reference count that is inside the object increases. When the reference is released, the counter decreases. When the last link is freed, the destructor of the object is called and the memory for the object is freed. It is believed that this technology allows you to create a more reliable code in terms of managing the lifetime of objects.

You can read more details about ARC compilers here: Automatic Reference Counting in Delphi Mobile Compilers
EhLib supports compilation in ARC mode. This allows you to compile EhLib under the Linux platform (If there are dependent libraries under ARC).
EhLib library compatibility with CrossVCL library
The compatibility with the CrossVCL library has been added to the EhLib.

This allows you to create "native" applications for Linux and MacOS based on source code of applications that are compatible with the VCL library.

The CrossVCL library replaces the Win32/64 API calls of the Windows.pas module with platform-specific libraries (Linux or MacOS). In addition, CrossVCL processes the incoming message queue in such a way that the message format becomes compatible with messages in the Win32 format and passes them to the message processing function of the application.

Thus, the application runs under a third-party platform in a format compatible with the calls and structures of the Win32 platform.

To create applications for Linux or MacOS based on your VCL applications, you must have the following software:

- Delphi XE 10.1, Delphi XE 10.2 or higher. (Delphi XE 10.1 does not support creating Linux applications)

https://www.embarcadero.com/products/delphi

The Delphi editors should include the source code of the VCL library.

The Delphi editors should include compilers for Linux and MacOS.

- CrossVCL library

https://www.crossvcl.com/
- Third-party libraries that you use in the application must be compiled in CrossVCL compatibility mode.

Editions of third-party libraries probably should include source codes.

 - The source code for your application must be compatible with CrossVCL. In the case of creating Linux applications, your application's source code should support compilation in ARC mode.

https://www.crossvcl.com/devguide.html
Features and limitations of the library components for the platforms Lazarus, MacOS, Linux
EhLib for Lazarus

The EhLib library under Lazarus only works in Win32 or Win64 mode.

The EhLib library under Lazarus does not include the following components that exist in the VCL version

- TDBRichEditEh - is not available. In LCL there is no base class TRichEdit.

- TPreviewBox - is not available. LCL does not have the required TMetafile class.

- TPrintDBGridEh - is not available. LCL does not have the required TMetafile class.

EhLib for MacOS, Linux

To compile the EhLib library under MacOS, Linux is necessary:

- Delphi XE 10.1 or higher

- CrossVCL Library

The library under MacOS, Linux does not include the following components that exist in the VCL version:

- TDBRichEditEh - is present, but works in TMemo mode. CrossVCL does not support the TRichEdit component.

- TPreviewBox - is present, but does not work. CrossVCL does not support TMetafile.

- TPrintDBGridEh - is present, but does not work. CrossVCL does not support TMetafile.

- Work with Registry objects is not supported.

Features of work and animation when moving columns in DBGridEh

When you move a column or columns in DBGridEh, the column name is displayed in a special window above the grid. If more than one column is moved, the number of columns to be moved is displayed in the upper right corner.

In this version, DBGridEh supports the movement of several selected columns at once.

[image: image1.png]Fish Vertical Fact

o

csssbas

5

3

The technology for storing settings - SettingsKeeper

Prior to version 9.2, there were several ways to store the program settings in the EhLib library.

1. TPropStorageEh Component.
A visual component that allows you to save any published property of any form component.

2. SaveColumnsLayout RestoreGridLayout methods in the TDBGridEh and TDBVertGridEh components.

Each method has its advantages and disadvantages.

The disadvantages of TPropStorageEh include the following:

- The saved value is lost when the Parent control is changed.

- The saved value is lost when renaming the control.

- There is no easy way to save user settings that are not directly contained in published properties.

- There is no easy way to perform various checks and "tuning" when saving / restoring property values.

The disadvantages of the SaveColumnsLayout methods RestoreGridLayout are:

- Quite severely limited in the format of data storage.

- There is no way to save additional properties.

- Can only be saved in Ini or Registry. It is not possible to save data, for example, in a database table.

Storage Settings The SettingsKeeper offers the following option for storing and restoring settings.

There is a special class TSettingsKeeperEh in the library.

This class is an array of settings.

Each element of the array consists of a key and a value.

You can treat this as the setup ID and the setting value.

The configuration ID must be unique.

The value of an element can be a string, a number or a nested array TSettingsKeeperEh.

Those you can create a hierarchical tree-like array of settings.

After you write all the form settings to the TSettingsKeeperEh array, you must save it in the

readable form in a file or other source of data storage.

To store the contents of an array in a textual, compact and easily readable format, the text format JSON is convenient.

The library contains functions for converting the contents of an array into a JSON text string

function SettingsKeeperToJSONString(Keeper: TSettingsKeeperEh): String;
and back

procedure JSONStringToSettingsKeeper(Keeper: TSettingsKeeperEh; JSon: String);
It is suggested to use a new way of storing application settings in the Ini file or other settings stores.

The TDBGridEh and TDBVertGridEh components have methods for saving the settings to the TSettingsKeeperEh array

procedure WriteSettings(Keeper: TSettingsKeeperEh); overload; virtual;
and to read the settings from the array

procedure ReadSettings(Keeper: TSettingsKeeperEh); overload; virtual;
The TSettingsKeeperEh class and SettingsKeeper settings storage technology is available only for Delphi XE6 or higher.

The script for using SettingsKeeper technology

The sequence of actions when using SettingsKeeper can be the following:

Record settings when closing or destroying Forms.

1. Create a TSettingsKeeperEh class and call a method to write values

When you destroy a TMyForm form in a method

 destructor Destroy;
create the array TSettingsKeeperEh and fill it with the settings data

 SetKeeper := TSettingsKeeperEh.Create;
 WriteSettings(SetKeeper);
2. Writing Values

2.1 If this is a simple text value, then use the

Add(const Key: String; const Value: String);
to add a setting to an array.

Example:

SettingsKeeper1.Add('Caption', Form1.Caption);
2.2 If this is a simple numerical value, then use the method

Add(const Key: String; const Value: Integer);
Example:

 SettingsKeeper1.Add('Left', Form1.Left);
2.3 If you want to write a nested array, then create an instance of the TSettingsKeeperEh class, add a simple value or other nested arrays to it and add the array to the main array of settings using the method

procedure Add(const Key: String; const Value: TSettingsKeeperEh);
Example:

procedure TBaseForm.WriteSettings(Keeper: TSettingsKeeperEh);
var
 BoundSettings: TSettingsKeeperEh;
begin
 BoundSettings := TSettingsKeeperEh.Create;
 BoundSettings.Add('Left', Left);
 BoundSettings.Add('Top', Top);
 BoundSettings.Add('Width', Width);
 BoundSettings.Add('Height', Height);
 Keeper.Add('Bounds', BoundSettings);
end;
3. Convert to JSON string

Translate the array into a JSON string using the method

 function SettingsKeeperToJSONString(Keeper: TSettingsKeeperEh): String;
4. Writing to the repository
Write a line in the Ini file or another source of storage settings.
Reading the saved data for the Form
1. Create a TSettingsKeeperEh class and call a method to read values

When creating a TMyForm form in a method

procedure DoCreate;
consider the JSON line from the Ini file (or another source of storage settings)
FormSettingsStr: String;
2. Reading each value
Based on the JSON line, create an array of SettingsKeeper
 SetKeeper := TSettingsKeeperEh.Create;
 JSONStringToSettingsKeeper(SetKeeper, FormSettingsStr);
3. Reading each value
Read the values of the desired items from SettingsKeeper:

3.1 Reading Text Values
If this is a simple text value, then use the TryGetStringValue
 if SettingsKeeper1.TryGetStringValue('Caption', Value) then
 Form.Caption := Value

3.2 Reading Numeric Values
If this is a simple numeric value, then use the TryGetIntegerValue
 if SettingsKeeper1.TryGetIntegerValue('Left', IntValue) then
 Form.Left := IntValue;
3.3 Reading Nested Arrays
If it's a nested array of values, then use the TryGetSubsettingsValue method to read a nested array:

 if Keeper.TryGetSubsettingsValue('Bounds', BoundsSets) then
 begin
 ReadBoundsSettings(BoundsSets);
 end;
then read the elements of the nested array:

procedure TBaseForm.ReadBoundsSettings(BoundsSets: TSettingsKeeperEh);
var
 IntValue: Integer;
begin
 if BoundsSets.TryGetIntegerValue('Left', IntValue) then
 Self.Left := IntValue;
 if BoundsSets.TryGetIntegerValue('Top', IntValue) then
 Self.Top := IntValue;
 if BoundsSets.TryGetIntegerValue('Width', IntValue) then
 Self.Width := IntValue;
 if BoundsSets.TryGetIntegerValue('Height', IntValue) then
 Self.Height := IntValue;
end;
Description of the JSonSettingsKeeper demo project
The JSonSettingsKeeper.dpr project proposes an option for using this technology

in the finished project.
The project is in the folder

<EhLib Archive>\Demos\JSonSettingsKeeper
For the convenience of using the technology, it is proposed in the project to create a basic Form that can store its position and size, and has virtual methods for adding additional settings to the inherited Forms.
In this example:

BaseFormUnit.pas

The basic Form TBaseForm for all other forms that can store its position and size.

It contains the following methods:

procedure ReadSettings(Keeper: TSettingsKeeper); virtual;
Saving settings in the settings array

Keeps the position and size of the form

procedure WriteSettings(Keeper: TSettingsKeeper); virtual;
Restore settings from the array settings

Restores the position and size of the form

function GetSettingID: String; virtual;
Get a unique form ID. Default class name.

procedure TBaseForm.DoCreate;
Reads the settings from the file "ProgramName" .Ini

destructor TBaseForm.Destroy;
Writes the form settings to an Ini file

MainFormUnit.pas

The main form of the project is inherited from TBaseForm. Other forms open from it.
Overrides the ReadSettings WriteSettings method to save a list of open forms when the main form is closed.
When you start the application, all the opening of the form is restored.
The remaining forms of the project are inherited from TBaseForm.
Unit1.pas

The unit contains DBGridEh, DBVertGridEh and Splitter on the form. The settings of the control data are supposed to be saved in SettingsKeeper.

Overrides method WriteSettings which:

- Calls the base method for writing / reading the position of the form window.

- Writes DBGridEh1 grid settings to an array of settings with the DBGridEh1 key.
 For recording, use the grid method TDBGridEh.WriteSettings
 GridSettings := TSettingsKeeperEh.Create;
 DBGridEh1.WriteSettings(GridSettings);
 Keeper.Add('DBGridEh1', GridSettings);
The TDBGridEh.WriteSettings method writes parameters such as Height of a line (if it is allowed to change the height of the line in the grid), SearchPanel search parameters (if the SearchPanel is active) and columns settings such as width, position, visibility, sort marker, height and width of the drop-down list if the text editor contains a drop-down list, the position of the cell in the RowPanel if the RowPanel mode is active.

- Records the settings of the vertical grid DBVertGridEh1 in the array of settings with the DBVertGridEh1 key
 For writing, the grid method is TDBVertGridEh.WriteSettings
 GridSettings := TSettingsKeeperEh.Create;
 DBVertGridEh1.WriteSettings(GridSettings);
 Keeper.Add('DBVertGridEh1', GridSettings);
- Records the location of the vertical splitter
 Keeper.Add('SplitterPosition', DBVertGridEh1.Width);
Similarly, the ReadSettings method is overridden.
Unit2.pas

Unit3.pas

Configuration Storage File JSonSettingsKeeper.Ini

As a result, after closing the program, the following values are written to the JSonSettingsKeeper.Ini file
[FormSettings]

TForm1={"Bounds":{"Height":"578","Left":"128","Width":"1168","Top":"459"},

"DBVertGridEh1":{"LabelColWidth":"64",

"Rows":{"Continent":{"RowIndex":"2","RowLines":"0","Visible":"True"},"Name":{"RowIndex":"0","RowLines":"0","Visible":"True"},"Population":{"RowIndex":"4","RowLines":"0","Visible":"True"},"Capital":{"RowIndex":"1","RowLines":"0","Visible":"True"},"Area":{"RowIndex":"3","RowLines":"0","Visible":"True"}}},

"DBGridEh1":{

"SearchPanel":{"CellBeginsWithMode":"True","CaseSensitive":"True","WholeWords":"True","SearchScope":"gssCurrentColumnEh"},

"Columns":{"Population":{"DropDownRows":"7","TitleSortMarker":"smDownEh","DropDownWidth":"0","Visible":"True","TitleSortIndex":"1","ColWidth":"186","ColIndex":"0"},"Name":{"DropDownRows":"7","TitleSortMarker":"smNoneEh","DropDownWidth":"0","Visible":"True","TitleSortIndex":"0","ColWidth":"96","ColIndex":"1"},"Continent":{"DropDownRows":"7","TitleSortMarker":"smNoneEh","DropDownWidth":"0","Visible":"True","TitleSortIndex":"0","ColWidth":"148","ColIndex":"3"},"Capital":{"DropDownRows":"7","TitleSortMarker":"smNoneEh","DropDownWidth":"0","Visible":"True","TitleSortIndex":"0","ColWidth":"148","ColIndex":"2"},"Area":{"DropDownRows":"7","TitleSortMarker":"smNoneEh","DropDownWidth":"0","Visible":"True","TitleSortIndex":"0","ColWidth":"64","ColIndex":"4"}}},"SplitterPosition":"300"}

TMainForm={"Bounds":{"Height":"319","Left":"130","Width":"305","Top":"130"},"OpenForms":"Form1;Form2;Form3"}

TForm3={"Bounds":{"Height":"314","Left":"450","Width":"329","Top":"136"}}

TForm2={"Bounds":{"Height":"411","Left":"948","Width":"838","Top":"51"}}
Other changes and new features
In TDBLookupComboboxEh

In DBLookupComboboxEh.DropDownBox.Oprions, the value dlgAutoFitRowHeightEh was added. Now the drop-down lists can have individual height records, depending on the size of the text in the field.

In TDBGridEh

In TDBGridEh, when you select multiple columns and change the width of one of the columns with the mouse, the width of all selected columns changes according to the width of the changed column.

