New features in EhLib 6.2
Brief description of the new features of this version:
· DropDownForms - custom drop-down windows.
· In component DBVertGridEh:
· Grouping field rows by categories.
· Sorting rows by the field captions.
DropDownForms - custom drop-down windows:
Typical DropDown window - is a list that appears in the control TComboBox when you click on the edit button.

New technology allows you to create a customizable drop-down windows that appears when user click on the button (EditButton) in TDBEditEh, TDBNumberEditEh, TInplaceEditor in DBGridEh etc. components.
[image: image1.png]rt Descripion Cost | Listhrice P[]

Vendor

No Name

6 Tediques (52 Dolphin Drive) 136,75 399,35

Vendor[VendorName. [Adress1 cey [Country
% 2122
1 Cacor Corporation | 161 Southfeld Rd | Southield USA
2| Undenwater 50N3dSieet indanapois USA
3/ JW. Luscher Mig. 65 Addams Sireet Berely USA

5 Divers’ 5208 D Macon USA

4| Scuba Professionals |3105 East Brace | Rancho Doingu USA.

7 Peny Scuba 3443 James Ave Hapevile USA
8|Beauchat, hc. | 45900 SW 2nd Ave |t Lauderdale | USA.

x]

Follow next steps to create and use a DropDown Form:
1. Create a Form that is inherited from TCustomDropDownFormEh class.
This can be done at Design-Time through the menu File-New-Other ...-Tab "EhLib Forms"-"DropDown Form" item.
2. Create and arrange controls on the Form.
3. Write Form event handlers:
OnInitForm event - to get the parameters passed from the text editor and initiate the form according to the received parameters.

OnReturnParams event - to store the selected value from the Form to the internal structure for the subsequent transmission to a text editor.
4. It is necessary to assign the property DropDownFormParams.DropDownForm or DropDownFormParams.DropDownFormClassName in a text editor or edit button (TDBEditEh, TDBNumberEditEh, DBGridEh.TColumnEh), where are you going to call the DropDown Form, to indicate which Form should be called when a user clicks on the edit button.
This is a sufficient minimum set of steps to make DropDown Form work at Run-Time.
By default, the text editor transmits the value as the first parameter in the Form and writes the resulting value of the first parameter transmitted from the From to itself text property.
Let’s look at the steps of creating a DropDown Forms with more details.
Step 1 - Creating a DoprDown Form class.
When creating a Form through menu menu File-New-Other ...-Tab "EhLib Forms"-Element "DropDown Form" a system call a library code that creates a new Form that is inherited from CustomDropDownFormEh class.
[image: image2.png]

Step 2 and 3 - Placing a components on the form and writing event handlers.
At Run-Time, working with a Form resembles working with a dialog box in a ShowModal mode. However, the system closes the DropDown Form when the form loses it active state. You can also close the form in the code indicating that the Form must be closed with a "Send the selected value to the calling control" indication. In this case the event in the edit control would be caused to store the selected value. You can also customize that the edit control assigns a selected value to itself automatically.
The Library calls an TCustomDropDownFormEh.OnInitForm event before showing the Form. It is necessary to initialize the Form before displaying and use the transferred data from the caller control.
Here is an example of event handler for OnInitForm event:
procedure TDropDownMemoEdit1.CustomDropDownFormEhInitForm(

 Sender: TCustomDropDownFormEh; DynParams: TDynVarsEh);

begin
 if DynParams.Count >= 1 then
 Memo1.Lines.Text := DynParams.Items[0].AsString;

 sbOk.Enabled := not ReadOnly;

 Memo1.ReadOnly := ReadOnly;

end;

In the above code the check is performed, whether any value was transferred from the Control through the DynParams parameter. If it was transferred, the value is assigned to a Memo1.
DropDown Form may be in of ReadOnly. This property is assigned by the transmission control depending of Control.Field.ReadOnly value. In the above code, we adjust components of the form according to the state ReadOnly. Consider that a ReadOnly form will not return any value, and will only be opened to view the data.
Closing the Form and transferring the selected values
Assign ModalResult property by mrOk to close the Form with the "Transfer selected value" indication.

Below is a code sample that closes the Form:
procedure TDropDownMemoEdit.sbOkClick(Sender: TObject);
begin
 ModalResult := mrOk;

 Close;

end;
The program will close the Form and call OnReturnParams event to transfer the selected values ​​in the internal variables.
By default, the system offers to write the selected values ​​in the DynVars array that is passed as a parameter.
Below is an example of an OnReturnParams event handler:
procedure TDropDownMemoEdit1.CustomDropDownFormEhReturnParams(

 Sender: TCustomDropDownFormEh; DynParams: TDynVarsEh);

begin

 DynParams.Items[0].AsString := Memo1.Lines.Text;

end;
In our case, we write the text from a TMemo to the first item of a DynParams collection. The collection will already contain an element, as we have already passed it in the Form using the same collection (This part will be discussed later in the part of customizing the edit control).
TCustomDropDownFormEh.FormElements property
TCustomDropDownFormEh class has a property to define of displaying additional special controls on the Form. Use FormElements property to specify which additional items have to be placed on the Form in the Run-Time:
ddfeLeftGripEh –SizeGrip control in the left corner. This element is used to change a window size.
ddfeRightGripEh– SizeGrip element in the right corner of the window.
ddfeCloseButtonEh – Close button.
ddfeSizingBarEh – The bar at the bottom of the window to change the height of the window by mouse.
[image: image3.png]

Basic properties of the DropDown class Form.

…
Basic events DropDown class Form.

…
Basic methods of the class DropDown Form.
…
Step 4 – Customizing the calling controls.
There are a DropDownFormParams property in the classes that work with text editors, such as TColumnEh, TDBEditEh etc.,. This property contains sub-properties to configure a DropDown Form: to define which form must be shown, how to pass and get parameters to/form the From.
Use the property DropDownFormParams.DropDownForm or DropDownFormParams. DropDownFormClassName to specify the name of the form to be displayed when a user clicks on the EditButton.

If DropDownFormParams.DropDownForm property is assigned then the Form must be created in advance and assigned to a global variable <DropDownFormName: TDropDownFormName>, which is created by the project code when creating forms. This creation and assignment occurs automatically when the form is in the list of «Auto-create forms» (see Project properties).
If DropDownFormParams.DropDownFormClassName property is assigned then the program will create a form just before showing and destroy it after the Form is closed. To allow the program to find the form designer by the name of the class, form class must be registered using procedure Classes.RegisterClass.

This can be done in the initialization part of DropDown Form unit.
Below is an example of registering a class:
unit MyDropDownFormUnit1;

…
interface

…

initialization

 RegisterClass(TMyDropDownForm1);

end.

There is another way to create a DropDown Form. Form is created before the first display and lives up to the end of the life of the program.

To implement this method follow the next steps:
- Assign the DropDownFormParams.DropDownFormClassName property
- Register the class of the Form using RegisterClass (TMyDropDownForm1) code.
- Override the virtual class function TCustomDropDownFormEh.GetGlobalRef: TCustomDropDownFormEh – to create Form on the first call and assigns it to a global variable.
Below is the sample of code that implements this functionality:
type

 TDropDownMemoEdit3 = class(TCustomDropDownFormEh)
…

 public

 class function GetGlobalRef: TCustomDropDownFormEh; override;

 end;
var

 DropDownMemoEdit3: TDropDownMemoEdit3;
implementation
…
class function TDropDownMemoEdit3.GetGlobalRef: TCustomDropDownFormEh;

begin

 if DropDownMemoEdit3 = nil then
 Application.CreateForm(TDropDownMemoEdit3, DropDownMemoEdit3);

 Result := DropDownMemoEdit3;

end;
…

end.
Step 4.1 Assigning parameters from edit control the DropDown Form.
Use DropDownFormParams.PassParams property to specify which field values ​​must be passed in the drop-down Form. The property can hold one of the next values:

pspByFieldNamesEh - Pass the value of the fields specified in the property DropDownFormParams. PassFieldNames

pspFieldValueEh - Pass the current value of the edit control.

pspRecordValuesEh - Pass the value of all the fields of the current DataSet record.

In the drop-down form, you can read the transferred value form DynParams collection.

DropDownFormParams property contains the following sub-properties:
	Property Name
	Property Type
	Description

	DropDownForm:
	TCustomForm
	Reference to a DropDown Form.

	DropDownFormClassName:
	String
	Reference to a class that implements DropDown Form.

	Align:
	TDropDownAlign
	Alignment of the DropDown Form relative to the edit control.

	PassParams:
	TDropDownPassParamsEh
	Way of passing the parameters.

	PassFieldNames:
	String
	The name of the DataSet fields, the value of which should be passed in the Form.

	AssignBackFieldNames:
	String
	The name of the DataSet field, the value of which assigned to the values ​​received from the Form.

	FormWidth:
	Integer
	Width of the Form. The Form width is written to the property when the Form is closed.

	FormHeight:
	Integer
	The height of the form. The Form height is written to the property when the Form is closed.

	SaveFormSize:
	Boolean
	The property determines whether to keep the size of the form in the FormWidth and FormHeight properties.

Example of using DropDown forms:
Examples of using and working with DropDownForms see at the Demo Project:

<EhLib Archive>\Demos\DropDownForm\Project1.dpr

compiled project:

<EhLib Archive>\Demos\Bin\DropDownForm.Exe

New properties in classes of the library for working with DropDown Forms:

New properties to customize the display drop-down forms appeared in the next classes:

(For DBGridEh)

TColumnEh.DropDownFormParams
TColumnEh.EditButtons[i].DropDownFormParams
(For DBVertGridEh)

TFieldRowEh.DropDownFormParams
TFieldRowEh.EditButtons[i].DropDownFormParams
TDBEditEh.EditButton.DropDownFormParams
TDBEditEh.EditButtons[i].DropDownFormParams
In EditButtons for TDBNumberEditEh, TDBDateTimeEditEh, TDBComboBoxEh, TDBLookupComboBoxEh controls.
In the DBVertGridEh component:
Grouping rows by Category
It is allowed to group rows into categories. See properties TDBVertGridEh.RowCategories

The category name is assigned to a TFieldRowEh.CategoryName property.
The rows can be grouped by:

- Category Name

- Field type
- Presence / absence of values ​​in a field of a current record.
Sorting rows by the row field captions.
It is allowed to sort rows by the row caption. See a TDBVertGridEh.RowsSortOrder property.
